印染废水中水回用是实现污染总量控制和节能减排的重要抓手。总结了印染行业废水来源及水质特征;分析了印染废水中水回用率过高对企业经济、产品和污水处理系统的影响,建议在膜技术运行过程中重视浓缩液的有效处理及膜污染防治。
印染工业作为中国具有优势的传统支柱行业之一,自20世纪90年代以来获得迅猛发展,其用水量和排水量也大幅度增长。国家统计局公布数据显示,2010年纺织业废水排放总量达245470万吨,高居全国工业部门第三位。近年来,随着我国经济的快速发展,淡水资源日益紧缺,印染废水的深度处理和回用已越来越引起人们的重视。
1、 国内印染废水处理及回用现状
我国对印染废水回用已有较多的研究,从目前研究及应用的情况来看主要有以下特点:
(1)回用技术大多处于试验研究阶段,多为小试和中试,实际工程应用较少,且水的回用率较低,一般不超过50%,主要回用于对水质要求不高的前道工序,缺乏有利于提高回用水水质及回用率的高效技术的推广应用。
(2)回用处理主要是对印染废水在达标处理的基础上进一步进行处理,达到回用水水质标准。处理工艺主要采用混凝、吸附、过滤和氧化等技术,其中对去除盐度和硬度的关键技术研究较少。
(3)由于现有技术水平的限制,印染废水大量回用对生产及废水处理系统会带来一系列问题,包括有机污染物和无机盐的积累。目前对废水长期回用的水质问题及对水处理系统的影响研究不多,特别是无机盐的积累问题基本没有涉及。
2 、印染废水深度处理及回用工艺介绍
印染废水常用的处理方法主要有:物化法、化学法、生化法、膜技术和其他组合工艺等。仅靠单一的处理工艺很难达到深度处理及回用的目的,必须对现有的工艺进行集成,采用多种工艺联合处理的方法,才能真正实现回用的目标。
2.1 物化法
物化法主要以吸附法为主,目前在印染废水深度处理及回用中常用的吸附剂有活性炭、硅藻土、活性氧化铝、粉煤灰、沸石、膨润土等。印染废水深度处理及回用研究和应用较多的是活性炭。活性炭比表面积大、亲水性强、吸附脱色效果好,特别适合于小分子水溶性染料的吸附脱色。活性炭对于二级生物处理后印染废水中的残余污染物(如合成染料、表面活性剂等)具有很好的吸附能力,但处理成本高,再生能耗大,常与其它工艺组合对纺织印染废水进行深度处理。张健俐等。
2.2采用臭氧脱色和活性炭吸附组合系统对淄博市某纺织企业的印染废水进行回用处理,进水COD值为8O~100mg/L、色度为0.25~0.35时,出水COD为6~10mg/L、色度为0.01~0.03,处理后的水可用于企业冷却循环系统,经济效益和环境效益明显。 谢丹萍等[3]采用连续膜过滤系统(CMF)-活性炭吸附工艺对某印染厂污水处理站排水进行回用处理,处理后出水Fe、Mn的去除率达到100%,色度为4、浊度0.2 NTU、COD<10mg/L,达到印染企业生产用水水质要求。
2.3化学法
印染废水处理中常用的氧化剂有Fenton试剂和臭氧。Fenton法具有简单、快速、可产生絮凝等优点,但仍存在氧化剂利用率低、氧化效率差、处理成本偏高等缺陷。目前,Fenton法常与电化学氧化法结合对纺织印染废水进行回用深度处理。如姜兴华等(1)将铁炭微电解一Fenton试剂联合氧化技术用于经A/O处理的印染废水出水,在最佳反应条件下,COD去除率达到90%以上,色度去除率为99%,达到了印染废水回用的要求。针对印染废水色度大的特点,臭氧极强的氧化性可有效去除色度及废水中的有机物,同时臭氧还具有杀菌除臭功能。在实际工程应用中,通常很少单独采用臭氧氧化法处理印染废水,而是与其他方法联合使用,如臭氧-活性炭和臭氧-曝气生物滤池。Lin等(2)在活性炭为填料的流化床或固定床中通人臭氧,把臭氧氧化和活性炭吸附组合成一个单一的过程。研究发现,臭氧氧化能够延长活性炭的再生,减少其再生成本;活性炭不仅仅是一个吸附剂,同时是臭氧氧化的催化剂。 两者可以弥补各自固有的不足。 具有很好的协同作用。顾晓扬等(3)采用臭氧-曝气生物滤池工艺对某纺织洗水厂二级生化处理出水进行回用处理,在进水COD约为8Omg/L、色度为16倍、浊度约为8NTU的条件下,当臭氧投加量为3O~45mg/L、曝气生物滤池水力停留时间为3~4h、气水比为5∶1时,出水COD<30mg/L、色度为2倍、浊度<1NTU,满足生产工艺对回用水水质的要求。
2.4 生化法
生化法主要是运用微生物的代谢作用来分解污染物,不仅可以用于印染废水的达标排放处理,而且也可以作为深度处理及回用技术。生化法主要有曝气生物滤池、生物活性炭等,一般很少采用生化法作为深度处理回用工艺,实际应用中多采用生化法与其他工艺联合使用。
曝气生物滤池(BiologicalAerated Filter,简称BAF)是一种集物理吸附、过滤和生物降解于一体的新型生物膜处理技术,它适用于低悬浮物和低COD废水的处理[7-8]。 BAF应用于印染废水深度处理主要是因为经过厌氧水解+接触氧化工艺处理的废水,其B/C值很小,可生化性很差,难降解的残余有机物首先被滤料和滤料上生物膜所吸附,其停留时间相当于生物膜泥龄时间,因此有足够的接触时间,使这些有机物被微生物所降解。黄瑞敏[9]在混凝处理后采用BAF处理,可使针织棉染色废水的COD指标低于国家污水排放标准,接近生产回用的要求。BAF出水再经过精密过滤去除细小悬浮物和离子交换去除水中的无机盐后,出水的各项指标均可以达到回用的要求。生物活性炭是生物处理和活性炭吸附相结合的组合工艺,微生物的氧化分解和生物吸附与活性炭物理吸附协调作用,使处理效果大大增强。耿士锁[10]采用生物接触氧化-生物炭流化床串联装置对印染废水深度处理,在进水水质COD为113~263mg/L、色度20~200倍、 SS为14~184mg/L前提下,去除率分别达到70 %~89 %、73 %~90 %、78 %~79 %。处理后的出水水质符合印染工艺洗涤用水要求。
3、膜技术
膜分离技术是目前国内外印染废水回用领域中研发和工程化应用的热点之一。目前在印染废水回用上应用较多的膜分离技术有:反渗透(RO)、纳滤(NF)、微滤(MF)和超滤(UF)。这些膜分离过程都是以压差为驱动力,废水流经膜面的时候,废水中的污染物被截留,而水透过膜,实现了对废水的深度处理。超滤可去除废水中大部分浊度和有机物,从而能减轻反渗透膜的污染,延长膜的使用寿命,减少膜系统的运行成本。反渗透不仅能有效去除有机物、降低COD,而且具有优秀的脱盐效果。由于COD脱除、脱色、脱盐能在一步完成,其出水品质高,能直接回用于印染环节,同时浓水可回流至常规工序处理,实现废水零排放和清洁生产。越来越多的研究表明,将不同的膜分离技术进行组合(如微滤、超滤、纳滤、反渗透等),或膜分离技术与其他技术(如膜生物反应器)相结合,是印染废水深度处理的一个研究方向。膜生物反应器是印染废水处理的新技术之一,将膜分离技术与生物反应器相结合,从而达到回用水质要求。夏炎等采用MBR-NF组合工艺处理苏州市东方污水厂初沉池污水,在进水水质COD 372~1121 mg/L,氨氮16.17~26.85mg/L,总氮19.18~46.54mg/L的情况下,经HRT 30 h,回流比300%的MBR处理后,出水COD、氨氮和总氮的平均去除率分别为87%,95.8%和70.2%,再经纳滤处理后,水质可满足印染工艺回用要求。Schoeberl等对MBR二级出水采用纳滤后处理,处理出水能够满足各项回用标准,但同时指出该方法目前仍面临较高的应用技术难度和经济成本。付江涛等采用双膜法工艺处理某印染厂废水并回用,COD去除率达到99%,浊度和色度的去除率均接近100%,反渗透对盐分的去除率在98%以上,满足回用于印染生产的要求。Marcucci等采用砂滤-超滤-反渗透和砂滤-超滤-纳滤两种深度处理工艺对印染废水的二级出水进行回用处理,反渗透对盐分的去除率达到95 %以上,可回用于包括对水质要求最高的浅色染色工艺在内的印染生产工序。Amar等采用该技术处理印染厂出水,出水效果达到了生产回用的要求。
3.1其他组合工艺
由于膜技术对进水水质要求较高,因此,一般需要经过适当预处理之后的废水才能进行膜处理。何耀忠等[16]采用“一体臭氧BAF+上流式BAF”组合工艺深度处理纺织印染废水,可为膜分离系统提供稳定可靠的进水。一体臭氧BAF在臭氧投加量为20~30mg/L时,具有最佳运行效能。结合后续曝气生物滤池,出水COD<40mg/L、BOD<10mg/L、SS<10mg/L、色度<4倍。膜分离系统中,反渗透产水完全满足染整工艺用水要求,膜滤浓缩液COD<100 mg/L、BOD<30mg/L、SS<50mg/L、色度<32倍,可达标排放。该联合工艺不但保证膜滤浓缩液达标排放,解决了过往工程应用中,膜滤浓缩液的后续处理难题,并可带来显著的经济效益,为纺织印染行业废水深度处理及回用设施的升级改造提供了一种新的解决方案。齐鲁青等采用预处理系统(臭氧-曝气生物滤池一体化装置+曝气生物滤池)和膜系统(超滤+反渗透)的组合工艺深度处理印染纺织废水。试验表明,臭氧氧化和BAF生物截留吸附作用使预处理系统保证了膜进水水质,经膜系统处理后,淡水回用,浓水仍然可以达标排放。预处理系统较佳运行参数为:气水比为5,有机负荷分别约为2.1、1.0kg(COD)/m3,溶解氧质量浓度为3.8 mg/L,水温35~40 ℃;臭氧直接通入曝气生物滤池,形成臭氧-曝气生物滤池一体化装置,臭氧投加量宜在20~30mg/L。当预处理系统进水COD质量浓度平均值为101.3mg/L,浊度为8.0NTU,SS质量浓度为21.9mg/L,氨氮质量浓度3.4mg/L,色度21倍,经过预处理系统稳定处理,出水COD质量浓度平均值可降至7.4mg/L,浊度为4.2 NTU,SS质量浓度为3.0mg/L,氨氮质量浓度0.7mg/L,色度2倍。预处理系统高效去除污染物,有效地保证了膜系统进水水质。测定浓水pH 7.3~8.3,色度32倍,COD质量浓度45.7~97.9mg/L,可直接排放。膜系统稳定运行期间,RO产水pH在7.4~7.9,电导率则在50~200μs/cm,平均脱盐率可达98.2%;总硬度2~10mg/L,平均去除率为89.2%;总碱度25~65 mg/L,平均去除率为95.0%。
4、结语
印染废水已经对我国水环境构成严重威胁,随着人们环保意识的增强,印染废水深度处理和回用越来越受到政府的关注。针对印染废水深度处理的单一技术较多且各具优缺点,但均难以达到排放及回用标准,要根据印染废水水质的特点,合理选择和优化组合处理工艺。 膜分离技术是印染废水深度处理的一个重要研究方向。
造纸废水处理工艺及新工艺大全
造纸业是传统的用水大户,也是造成水污染的重要污染源之一。随着经济的发展,企业日益面临水资源短缺、原料匮乏的问题,而另一方面,水污染也越来越严重。目前,我国造纸工业废水排放量及COD排放量均居各类工业排放量的首位,造纸工业对水环境的污染为严重,它不但是我国造纸工业污染防治的首要问题,也是我国工业废水进行达标处理的首要问题。
从国家造纸工业发展趋势看,国家预计到2020年全国纸及纸板产量为7000万~7500万吨,因此国内外纸业人士普便认为,中国是全世界纸类消费最具活力和潜力的市场,制浆造纸前景十分广阔。制浆造纸对国民经济的发展起到了很大的作用。
但从环保的角度看,据环保部门统计:2002年制浆造纸工业废水排放总量为31. 9亿吨,占整个工业废水排放量的 17. 4%。其中达标排放占26.9亿吨,达标率为84. 3%。
从废水中污染物的排放量看,化学需氧量COD 排放量为163. 9万吨,占全国工业废水COD排放量的 35. 5%。
从废水排放量来看,制浆造纸业排全国工业废水排放量的第二位,从行业化学需氧排放情况看,制浆造纸业排第一位,所以造纸废水对环境污染相当严重,直接影响国民经济的发展。
一、造纸废水的来源与特点
1.1 蒸煮工段废液
黑液中所含的污染物占到了造纸工业污染排放总量的 90%上,且具有高浓度和难降解的特性,它的治理一直是一大难题。黑液中的主要成分有3 种,即木质素、聚戊糖和总碱。木质素是一类无毒的天然高分子物质,作为化工原料具有广泛的用途,聚戊糖可用作牲畜饲料。
1.2中段水
制浆中段废水是指经黑液提取后的蒸煮浆料在筛选、洗涤、漂白等过程中排出的废水,颜色呈深黄色,占造纸工业污染排放总量的8%~ 9%,吨浆COD负荷310kg左右。中段水浓度一般在1000~1500mg/L,BOD和COD的比值在0.20~0.35之间,可生化性较差,有机物难以生物降解且处理难度大。中段水中的有机物主要是木质素、纤维素、有机酸等,以可溶性COD为主。其中,对环境污染最严重的是漂白过程中产生的含氯废水,如氯化漂白水即抄纸工段废水,它来源于造纸车间纸张抄造过程。白水主要含有细小纤维、填料、涂料和溶解了的木材成分,以及添加的胶料、湿强剂、防腐剂等,以不溶性COD为主,可生化性较低,其加入的防腐剂有一定的毒性。白水水量较大,但其所含的有机污染负荷远远低于蒸煮黑液和中段废水。现在几乎所有的造纸厂造纸车间都采用了部分或全封闭系统以降低造纸耗水量,节约动力消耗,提高白水回用率,减少多余白水排放。
二、废水处理方法
2.1 物理化学法
物理化学法包括对悬浮物、粒子、色度和有毒化学物的沉积、浮选、吸附、筛选、凝固、氧化、臭氧化作用、电解、反渗透、超滤和纳滤等。
2. 1. 1 沉积和浮选
采用沉积工艺可以去除总悬浮物的80%,加入净水剂可降低总悬浮物的70%~80%,通过气浮工艺可使TSS降低65%~95%,通过溶性空气浮选使TSS降低达95%。有研究发现采用浸没燃烧浮选去除木质素,处理效果较佳。
2. 1. 2 凝固和沉淀作用
凝固和絮凝在制浆造纸废水处理中常用于三级处理,研究发现对于含酚化合物及氨苯璜胺的制浆废水中用H2O2等处理,酚的含量可减少至 1mg/L,总的有毒化合物可减少46%。用明矾做絮凝剂处理造纸机排放的废水,COD的去除率可达 96% ,处理制浆废水COD的去除率达50%,处理漂白段的废水COD的去除率达20%。选用硫酸铝和其它改良的吸附剂能有效去除木材制浆造纸废水的色度。有研究发现硫酸铝和聚丙烯酰胺(PAM)作为混凝剂的混凝气浮法处理纸板中段废水,浊度去除率达97%以上,COD去除率达80%以上。
2. 1. 3 吸附作用
使用活性碳、硅藻土、煤炭能有效去除废水中的色度。使用活性碳作吸附剂处理漂白段废水对色度、COD、DOC、AOX的去除率均达到90%;有研究发现粉煤灰等处理造纸废水,结果表明粉煤灰能有效吸附造纸废水中的SS、COD、色度等,使废水达到零排放指标。
2. 1. 4 化学氧化作用
通过光催化剂的氧化作用,处理硫酸盐漂白废水时处理效果较佳,缺点是对COD和氯的浓度有要求。有研究发现使用光催化剂如 O2 /ZnO /UV,O2/TiO /UV,O3 /UV 处理漂白废水中含酚等化合物,结果表明在短时间内处理效果较佳的是O2/ZnO /UV,O2 /TiO /UV工艺。通过湿氧化法处理废水使废水的生物降解性提高30%~70%;有研究表明TiO 2 光催化氧化可以有效地处理酚类、卤代烃类、氰化物及各种有机酸等。采用光催化技术处理硫酸盐法制浆黑液,大大降低黑液中酚类化合物的浓度,COD及色度去除率可分别达 94. 2%和99. 6% ,出水几乎清澈透明。
2. 1. 5 膜过滤
有研究表明采用膜过滤法处理造纸废水,并比较了超滤和超滤联用气浮法的处理效果,结果表明单独使用超滤工艺对TOC、色度、SS的去除效果分别达54%、88%、100%,而超滤联用气浮选工艺对TOC、色度、SS的去除效果分别达65%、90%、100%;过反渗透工艺对BOD、COD的去除率达88%、89%。选用膜分离工艺(MF)和粒状膜过滤工艺(GMF)处理制浆造纸废水中的重金属,去除效果极优。用纳滤膜对木材制浆碱萃取阶段所形成废液进行脱色,发现废液中的带色物质、木质素和氯化木质素均可被截留,色度去除达98%。
2. 1. 6 臭氧化作用
用臭氧处理制浆造纸废水,能有效去除COD、TOC等,以及增加废水的可生化性。
2. 2 生物处理
2. 2. 1 活性污泥法
通过二级活性污泥工艺处理废水对于BOD、可溶性COD有很高的去除效果;改进的活性污泥床工艺处理废水,COD、BOD的去除效果分别从 51%上升到90%,70%上升到93%。通过活性污泥中的微生物群(如假单孢菌、柠檬酸细菌、肠道细菌等)的生物降解可有效去除废水中的色度、BOD、COD、酚类和硫化物等。有研究发现,活性污泥法处理过程的厌氧、缺氧、好氧环境抑制了引起污泥膨胀的丝状菌的繁殖生长,同时证明了活性污泥法的优势。
2. 2. 2 好氧塘
氧化塘工艺处理造纸废水,对于废水中的化学物质的去除率达50%以上,有效去除废水中的 BOD、AOX、氯酚、多氯酚类化合物。
2. 2. 3 好氧生物反应器
序批式生物反应器(SBR)工艺处理制浆造纸废水,对于废水中的甲醇去除率达到100%,而COD的去除效果达 90%以上;采用高效生物反应器(HCR)工艺污水滞留时间为1.5h,处理TMP工艺废水,可有效去除废水中的COD、TOC、BOD、木质素及树脂酸等污染物。另一报道通过一移动床膜生物反应器(MB2BR)处理制浆造纸废水高效去除废水中的COD。有研究报道用膜生物反应器处理造纸废水中TOC去除率达93%。使用生物滤膜处理制浆造纸废水,对于废水中的BOD、COD、SS、AOX的去除率分别达到76%、62%、81%和 48%。
2. 2. 4 厌氧处理
1980年以前,厌氧工艺基本不用于制浆造纸废水的处理,认为更适合处理高浓度有机废水。厌氧过滤、上流式污泥反应器(UASB )、流化床、厌氧塘以及厌氧接触反应器等厌氧工艺现已被用于制浆造纸废水的处理。Chen和 Horan研究报道用 UASB 工艺处理制浆造纸废水,废水停留时间为6h,废水中的 COD、硫化物的去除率达 66%和73%。
2. 3 集成处理工艺
不同工艺的混合或集成工艺处理造纸废水效果更佳。用凝固和湿法氧化的混合工艺处理制浆造纸废水COD去除率达51%,色度的去除率达83%,木质素的去除率达75%。用臭氧和生物膜反应器混合工艺COD 的去除率达 80%;用活性污泥法和臭氧混合工艺作为制浆造纸废水的三级处理,COD的去除率达87%~97%,BOD 的去除率达 97%。有研究表明采用好氧-厌氧组合处理反应器,COD和SS的去除率均可达95%以上。针对草浆造纸中段废水,进行了厌氧折流板反应器ABR(Anaerobic Baffled Reactor)、SBR组合处理工艺的研究,结果表明组合工艺处理效果好,COD和BOD5去除率达90%左右,抗冲击负荷能力强。
三、现有新工艺
3.1利用活化粉煤灰处理造纸废水
粉煤灰是一种松散固体集合物,是由Si、Al、Ca、Fe、C 等元素的氧化物和一些微量元素、稀有元素组成的海绵状和空心球状的细小颗粒,具有很大的比表面积。对这些材料进行活化处理,可大大提高灰的物理和化学吸附性能,进而用作吸附材料。对粉煤灰进行活化能增加其对造纸废水COD 的去除效果;最佳的试验设计为40%硫酸活化、粒度160~200目、投加量为30g/100ml;影响COD去除率的因素中,投加量影响最大,粒度次之,活化方式影响最小。
3.2 Biolak 工艺处理造纸废水
Biolak(国内称之为百乐克)工艺基于多级A/O理论和非稳态理论,在同一构筑物中设置了多个A/O段,使污水能够经过多次的缺氧与好氧过程,强化了污泥的活性,创造了适于各种微生物生长的良好环境,实现了对有机物、氮和磷的高效去除。Biolak工艺是一种低负荷活性污泥工艺,它采用数池(除磷池、曝气池、沉淀池、稳定池)合建的方式,布置简洁,建造方便,出水水质稳定而良好。
3.3 DMC 废水处理新工艺
DMC 清洁法污水处理技术是催化法造纸技术中的一项污水处理专业技术。该技术摆脱了传统污水处理方法的复杂工艺,以全新的设计理念和独特的处理工艺,利用高效絮凝剂和金属膜自动固液分离技术,大大提高污水处理的效率和标准,创造了污水处理领域中革命性的清洁生产治污技术。DMC 污水处理工艺是一种处理含有难降解有机物废水的新工艺。这个工艺主要是处理的污水和高效絮凝剂混合,使其发生物理、化学反应,将污水中的悬浮物质、胶体物质通过混凝形成絮体,再通过高浊度污水净化器——金属膜过滤机组,使絮状物与水快速分离达到水质净化要求。
随着科技的不断进展,制浆造纸废水处理和资源化技术日新月异。传统的废水处理回用技术不断被革新和发展,出现了许多更新的、更先进的技术。与此同时,废水和资源是对立统一的,废水可以被认为是有待于开发的资源,只要技术过关、措施得当,废水完全可以转化为资源。