left top
footer

     

    第二节    脂类的消化、吸收和代谢

    网友笑熬浆糊收集整理


        一 消化、吸收及转运
     
        脂类由于是非极性的,不能与水混溶,所以必须先使其形成一种能溶于水的乳糜微粒,
    才能通过小肠微绒毛将其吸收。上述过程可概括为:脂类水解→水解产物形成可溶的微粒→小肠粘膜摄取这些微粒→在小肠粘膜细胞中重新合成甘油三酯→甘油三酯进入血液循环。非反刍动物和反刍动物机体内部都有上述过程,但具体的机制却存在差异。


        (一)非反刍动物的消化吸收   

     
        1.脂类在消化道前段的消化
        胃脂肪酶和幼小动物口腔的脂肪酶对正常饲粮脂类的消化作用甚小。猪胃脂肪酶仅对短、中链脂肪酸组成的脂类有一定消化作用。幼小动物在胰液和胆汁分泌机能尚未发育健全以前,口腔内的脂肪酶对奶脂具有较好的消化作用,但随年龄增加,此酶分泌减少。正常情况下,十二指肠逆流进胃中的胰脂酶有一定程度消化作用。
        饲粮脂类进入十二指肠后与大量胰液和胆汁混合,胆汁在激活胰脂酶和乳化脂类方面发挥着重要作用。在肠蠕动影响下,脂类乳化便于与胰脂酶在油—水交界面上充分接触。在胰脂酶作用下甘油三酯水解产生甘油一酯和游离脂肪酸。磷脂由磷脂酶水解成溶血性卵磷脂。胆固醇酯由胆固醇酯水解酶水解成胆固醇和脂肪酸。甘油一酯、脂肪酸和胆酸均具有极性和非极性基团,三者可聚合在一起形成水溶性的适于吸收的混合乳糜微粒(mixed micellae)。混合微粒既有极性基团又有非极性基团,极性基团向外排列与水紧密接触,非极性基团向内。混合微粒的一个重要特性是其内部的非极性的脂质部分可携带大量的非极性化合物如固醇、脂溶性维生素、类胡萝卜素等,否则这些物质不能被吸收。   


        2.脂类在消化道后段的消化
        饲粮脂类在消化道后段的消化与瘤胃类似。不饱和脂肪酸在微生物产生的酶作用下可变成饱和脂肪酸,胆固醇变成胆酸。


        3.脂类消化产物的吸收
       十二指肠内形成的混合微粒直径仅为50-100埃,可携带脂类的消化产物到达小肠粘膜细胞供吸收。当混合乳糜微粒与肠绒毛膜接触时即破裂,所释放出的脂类水解产物主要在十二指肠和空肠上段被吸收。胆盐也被释放出来。脂类水解产物通过易化扩散过程吸收。鸡的吸收过程不需要胆汁参加。一般来说,脂类水解产物进入吸收细胞是一个不耗能的被动转运过程,但进入吸收细胞后,重新合成脂肪则需要能量。实际上从肠道吸收脂肪的过程也消耗了能量,只有短链或中等链长的脂肪酸吸收后直接经门静脉血转运而不耗能。猪禽吸收消化脂类的主要部位是空肠。
        胆盐吸收的情况各异。猪等哺乳动物主要在回肠以主动方式吸收,能溶于细胞膜中脂类的未分解胆酸在空肠以被动方式吸收,禽整个小肠都能主动吸收胆盐,但回肠吸收相对较少。各种动物吸收的胆汁,经门脉血到肝脏再分泌重新进入十二指肠,形成胆汁肠肝循环。
        在肠粘膜上皮细胞中,吸收的长链脂肪酸(碳原子数在12个以上)与甘油一酯重新合成甘油三酯,中、短链脂肪酸则可直接进入门脉血液。肠粘膜细胞中重新合成的甘油三酯外被一层蛋白质膜,这些外被蛋白质膜的脂质小滴称为乳糜微粒(Chylomicrons),主要由甘油三酯和少量的磷脂、胆固醇酯和蛋白质构成。乳糜微粒经胞饮作用的逆过程逸出粘膜细胞,通过细胞间隙进入乳糜管。乳糜管与淋巴系统相通,经胸导管将乳糜微粒输送入血。哺乳动物通过上述方式将大多数长链脂肪酸吸收入血。在肠粘膜细胞中甘油三酯重新合成的过程,
    禽类与哺乳动物相似。


       (二)反刍动物的消化吸收
        瘤胃尚未发育成熟的反刍动物,脂类的消化与非反刍动物类同。


        1.脂类在瘤胃的消化
        瘤胃脂类的消化,实质上是微生物的消化,其结果是脂类的质和量发生明显变化:
        (1) 大部分不饱和脂肪酸经微生物作用变成饱和脂肪酸,必需脂肪酸减少。瘤胃是一个高度还原的环境,生物氢化是瘤胃脂肪消化的一个重要过程。饲粮中90%以上的含多个双键的不饱和脂肪酸被氢化,氢化作用必须在脂类水解释放出不饱和脂肪酸的基础上才能发生。氢化反应受细菌产生的酶催化。反应需要的氢来源于NADH或内源电子供给体,也来源于瘤胃发酵产生的氢。据研究,瘤胃发酵产生的氢大约14%用于微生物体内合成,特别是微生物脂肪合成和不饱和脂类氢化。
        (2)部分氢化的不饱和脂肪酸发生异构变化。粗饲料和谷物中的脂类主要是甘油三酯、半乳糖甘油酯和磷脂,主要的脂肪酸是C18:2和C18:3。C18:2和C18:3的生物氢化涉及一个同分异构反应,即将顺12-双键转化为反-11双键异构体,随后还原为反—11—C18:1,最终进一步还原为C18:0(硬脂酸)。C18:0是C18:1、C18:2和C18:3生物氢化后的主要产物,但瘤胃中产生的一些反式异构体随食糜进入小肠被吸收,结合到体脂和乳脂中。
        (3)脂类中的甘油被大量转化为挥发性脂肪酸。小肠胰脂酶主要将甘油三酯水解为游离脂肪酸和甘油一酯,瘤胃微生物酶则主要将甘油三酯水解为游离脂肪酸和甘油,后者被转化为挥发性脂肪酸。半乳糖甘油酯先被水解为半乳糖、脂肪酸和甘油,后者再转化为挥发性脂肪酸。
        (4)支链脂肪酸和奇数碳原子脂肪酸增加。瘤胃微生物可利用丙酸、戊酸等合成奇数碳原子链脂肪酸(如C15:0),也可利用异丁酸、异戊酸以及支链氨基酸(缬氨酸、亮氨酸和异亮氨酸)等的碳骨架合成支链脂肪酸。
        脂类经过重瓣胃和网胃时,基本上不发生变化;在皱胃,饲料脂肪、微生物与胃分泌物混合,脂类逐渐被消化,微生物细胞也被分解。


        2.脂类在小肠的消化
        进入十二指肠的脂类由吸附在饲料颗粒表面的脂肪酸、微生物脂类以及少量瘤胃中未消化的饲料脂类构成。由于脂类中的甘油在瘤胃中被大量转化为挥发性脂肪酸,所以反刍动物十二指肠中缺乏甘油一酯,消化过程形成的混合微粒构成与非反刍动物不同。成年反刍动物小肠中混合微粒由溶血性卵磷脂、脂肪酸及胆酸构成。链长小于或等于14个碳原子的脂肪酸可不形成混合乳糜微粒而被直接吸收。混合乳糜微粒中的溶血性卵磷脂由来自胆汁和饲粮的磷脂在胰脂酶作用下形成,此外由于成年反刍动物小肠中不吸收甘油一酯,其粘膜细胞中甘油三酯通过磷酸甘油途径重新合成。
        由于反刍动物消化道对脂类的消化损失较小,加之微生物脂类的合成,所以进入十二指肠的脂肪酸总量可能大于摄入量。绵羊饲喂高精料饲粮,进入十二指肠的脂肪酸量是采食脂肪酸的104%。


        3.脂类消化产物的吸收
        瘤胃中产生的短链脂肪酸主要通过瘤胃壁吸收。其余脂类的消化产物,进入回肠后都能
    被吸收。呈酸性环境的空肠前段主要吸收混合微粒中的长链脂肪酸,中后段空肠主要吸收混合微粒中的其它脂肪酸。溶血磷脂酰胆碱也在中、后段空肠被吸收,胰液分泌不足,磷脂酰胆碱可能在回肠积累。


        (三)脂类的转运
        血中脂类主要以脂蛋白质的形式转运。根据密度、组成和电泳迁移速率将脂蛋白质分为四类:乳糜微粒、极低密度脂蛋白质(Very-low-density,缩写VLDL)、低密度脂蛋白质(Low density lipoprotein,缩写LDL)和高密度脂蛋白质(High density lipoprotein ,缩写HDL)。乳糜微粒在小肠粘膜细胞中合成,VLDL、LDL、和HDL既可在小肠粘膜细胞合成,也可在肝脏合成。脂蛋白质中的蛋白质基团赋予脂类水溶性,使其能在血液中转运。中、短链脂肪酸可直接进入门静脉血液与清蛋白质结合转运。乳糜微粒和其它脂类经血液循环很快到达肝脏和其它组织,向狗注射14C标记的棕榈酸甘油酯,10分钟以内,其在血液中的浓度即减少一半。禽类淋巴系统发育不健全,所有脂类基本上都是经门脉血液转运。血中脂类转运到脂肪组织、肌肉、乳腺等毛细血管后,游离脂肪酸通过被动扩散进入细胞内,甘油三脂经毛细血管壁的酶分解成游离脂肪酸后再被吸收,未被吸收的物质经血液循环到达肝脏进行代谢。


        二、 脂类代谢及其效率
        (一)脂类代谢
        饲料脂类在体内代谢极为复杂,受遗传、动物种类和营养的影响,在饲粮脂类和能量供给充足情况下,体内脂肪组织和肌肉组织都以甘油三酯的合成代谢为主,饥饿条件下则以氧化分解代谢为主。


        1.脂肪合成的部位
    猪和反刍动物脂肪合成主要在脂肪组织中进行,人主要在肝中进行脂肪合成,禽完全在肝中合成,过量则沉积于肝中,产生脂肪肝症。鼠、兔等的肝脏和脂肪组织中都可进行较为活跃的脂肪合成。
        脂肪细胞中脂肪代谢主要是为了贮存过多的能量和通过脂肪代谢循环向血浆提供游离脂肪酸,如图6-1所示。

     

         2.脂肪的合成
        非反刍动物和反刍动物均可利用经消化道吸收的脂肪酸作为合成脂肪的原料。
        对于非反刍动物,合成脂肪的另一重要底物是进入糖酵解循环最终转化为丙酮酸的葡萄糖。在食物充足时,大量的草酰乙酸和丙酮酸被转化为用于脂肪合成的乙酰CoA。乙酰CoA不能透过线粒体膜而柠檬酸则能通过。因此,乙酰CoA与草酰乙酸缩合成柠檬酸进入
    细胞质,在此草酰乙酸被脱去,剩下能用于脂肪合成的乙酰CoA。草酰乙酸则转化为苹果酸,再转化为丙酮酸,返回三羧循环。反刍动物则不能将葡萄糖转化为脂肪,原因在于它没有两个关键酶——ATP柠檬酸裂解酶(将柠檬酸裂解为草酰乙酸和乙酰CoA)和NADP-柠檬酸脱氢酶(转化苹果酸为丙酮酸)。因此,上面所描述的非反刍动物的机制不适用于反刍动物,幼龄反刍动物有转变葡萄糖为脂肪酸的能力。
        来自饲料的不饱和脂肪酸在猪、禽体内不经氢化可直接沉积在体脂肪中。因此,当饲喂不饱和脂肪酸含量高的饲料脂肪时,猪体内的不饱和脂肪酸亦显著升高,导致猪的体脂变软,容易酸败,肉的品质下降,不适宜做腌肉和火腿。为尽量避免这种情况,在猪的肥育后期,可饲喂麦类、薯类等含淀粉多的饲料。马、兔消化道后段具有与瘤胃相似的细菌,虽同样可将来自饲料的不饱和脂肪酸大量氢化为饱和脂肪酸,但由于饲料脂肪在进入消化道后段之前,大部分已在小肠被消化吸收,故马、兔体脂肪的饱和程度仍受饲料脂肪较大的影响。而反刍动物所采食的不饱和脂肪酸在瘤胃内大量氢化形成饱和脂肪酸,下移到小肠经消化吸收以饱和脂肪酸的形态沉积为体脂,另外,瘤胃微生物合成的高级脂肪酸也多为饱和性质。由于上述两个原因,无论反刍动物所采食的饲料脂肪饱和程度高还是低,它们的体脂肪依然可保持硬度大,熔点高,饱和脂肪酸含量多的特点。


        3.脂肪的氧化供能
        肌肉细胞中脂肪是体内重要的脂肪代谢库,其代谢主要是氧化供能。细胞内营养素氧化代谢的总耗氧量,脂肪占60%。肌肉组织中沉积的脂肪可直接通过局部循环进入肌肉细胞进行氧化代谢,使脂肪表现出高的能量利用效率。饲粮和内源代谢供给的脂肪酸,肌细胞都能氧化利用。长链脂肪酸只在葡萄糖供能不足情况下才能发挥供能作用。进入肾脏的脂肪酸也主要用于氧化供能。心肌氧化β-羟基丁酸供能比氧化脂肪酸供能更有效。


       (二)脂类的代谢效率?
        1.脂肪沉积的效率
        一些饲料营养物质在体内形成脂肪沉积的利用效率列于表6-3。
                                                                        表6-3  营养素转变成脂肪的效率

    营养素(前体)
    脂肪(产物)
    效率 %
    饲粮脂肪
    体脂肪
    70-95
    乙  酸
    棕榈酸酯
    72
    葡萄糖
    三棕榈酸酯
    80
    蛋白质(鱼粉)
    体脂肪
    65

      这些利用率均系理论值,用于实际生产一般偏高。因为实际生产中有很多因素影响利用率。产奶后期的奶牛,体内营养素的负平衡开始转为正平衡,体脂肪沉积开始恢复,饲料能量沉积体脂肪的利用率可达75%。而干奶期奶牛利用饲料能量沉积体脂肪的效率只有59%。饲粮结构对沉积体脂肪的影响更明显。凡引起发酵产热增加和体内代谢产热增加的因素都会降低能量利用效率。


        2.脂肪氧化供能的效率
        体脂肪氧化供能的效率,按β-氧化途径计算,任何脂肪酸经此途径氧化都要耗用2 mol ATP。每脱去一个二碳单位都可生成5 mol ATP。每分子乙酰辅酶A彻底氧化可产生12 mol ATP。以棕榈酸为例,照此计算可净生成129 mol ATP((12+5)*(16/2-1)+12-2)。每分子ATP在生理条件下可提供能量33.5KJ,这样,棕榈酸氧化供能的效率大约是43%。同样可以估计出乙酸氧化供能的效率大约是38%,丙酸39%,丁酸41%,已酸42%,硬脂酸43%,甘油44%。



    CopyRight2011-2013 猪友之家 PIG66.COM All Rights Reserved.辽ICP备11016505号-2